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A B S T R A C T

Strong relationships between size and other traits have long motivated studies of the size structure and
dynamics of planktonic food webs. Size structured ecosystem models (SSEMs) are often used to represent
the behavior of these ecosystems, with organism size as a first order approximation of the axis of biological
diversity. Previous studies using SSEMs have reported the emergence of localized ‘‘peaks’’ in the size spectrum,
a phenomenon that will be referred to in this study as ‘‘quantization’’. However, SSEMs that are used routinely
in Earth System Models (ESMs), they tend to be too coarsely discretized to resolve quantization. Observational
studies of plankton biomass have also shown qualitatively similar patterns, with localized peaks along the
size spectrum. The conditions under which quantization occurs and the ecosystem parameters that control
the locations of the biomass ‘‘peaks’’ along the size spectrum have not been systematically explored. This
study serves to simultaneously advance our understanding of the constraints on quantization in size-structured
ecosystems, and to suggest an approach to discretizing SSEMs that leverages quantization to select a greatly
reduced number of size classes. A size-structured model of the pelagic food web, similar to those implemented
in global models, is used to investigate the sensitivity of biomass peaks to predator–prey interactions, and
nutrient forcing. This study shows that the location of biomass peaks along the size spectrum is strongly
controlled by the size selectivity of predation, and the location of biomass peaks along the size spectrum is
less sensitive to variations in nutrient supply, external ecosystem forcing, and vertical heterogeneity. Taking
advantage of a robust localization of biomass peaks, the dynamics of a continuous planktonic size spectrum to
be represented using a few selected size classes, corresponding to locations of the peaks along the size spectrum.
These findings offer an insight on how to approach discretization of size structured ecosystem model in Earth
system models.
1. Introduction

Phytoplankton form the base of the marine food-web, and under-
standing their community structure can aid in predicting the composi-
tion and productivity of higher trophic levels and top predators (Stock
et al., 2017). Community composition depends on complex interac-
tions between the physical environment, resource availability, compe-
tition, and predation, which in turn determine patterns of productiv-
ity (Hutchinson, 1961; Hillebrand and Azovsky, 2001; Righetti et al.,
2019; Mousing et al., 2016; Steele and Henderson, 1992; Vallina et al.,
2014).

Numerical and theoretical models have long been used as a tool to
understand plankton behavior and interactions in the context of physi-
cal drivers, ecology, and food-web dynamics (Armstrong and McGehee,
1980; Follows and Dutkiewicz, 2011; Adjou et al., 2012; Ward et al.,
2014; Lévy et al., 2014). However, models often lack levels of di-
versity found in oceanic plankton communities (Loeuille and Loreau,
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2005). Instead of explicitly capturing large-scale biodiversity, specific
ecological and functional traits are often chosen to represent planktonic
diversity in models (Follows and Dutkiewicz, 2011). Size has long been
used to model planktonic diversity (Moloney and Field, 1991; Poulin
and Franks, 2010; Banas, 2011; Ward et al., 2012; Sauterey et al.,
2017) because of strong empirical relationships between size and other
physiological and ecological traits (Andersen et al., 2016; Litchman
et al., 2007). More broadly, size mechanistically controls a variety of
ecological processes, from resource uptake strategies, to predator–prey
interactions across trophic levels (Andersen et al., 2016).

The distribution of dominant phytoplankton sizes is, broadly speak-
ing, a function of resource availability and predation, i.e., bottom-up
and top-down processes (McQueen et al., 1986; Lehman, 1991; Banse,
1994; Verity and Smetacek, 1996; Chenillat et al., 2013). In olig-
otrophic environments, small cells are responsible for most of the
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total phytoplankton biomass (Chisholm, 1992; Partensky et al., 1999;
Worden et al., 2004). In contrast, in productive regions, characterized
by high chlorophyll and nutrient concentrations, large cells are respon-
sible for a substantial fraction of phytoplankton blooms and biomass
variability (Chavez, 1989; Chisholm, 1992; Cavender-Bares et al., 2001;
Venrick, 2002). Ecosystems that are dominated by low levels of sur-
face nutrients and small phytoplankton size are characterized by fast
nutrient cycling near the surface (Fowler et al., 2020; Partensky et al.,
1999). This is a consequence of rapid uptake rates and strong grazing
pressures (Tang, 1995). In contrast, ecosystems with high levels of
surface nutrients and large phytoplankton size are characterized by
weak recycling at the surface and significant export of sinking organic
matter, supporting the oceanic carbon pump (Tréguer et al., 2018;
Boyd et al., 2019). Large phytoplankton require more macro-nutrients
and are usually characterized by larger half saturation constants, and
hence slower uptake rates, compared to smaller organisms. However,
they benefit from lower grazing pressure as a consequence of their
size (Tang, 1995; Hansen et al., 1994), especially during bloom con-
ditions (Behrenfeld and Boss, 2014). Zooplankton follow patterns of
food uptake and limitation as a function of size that are similar to
phytoplankton (Hansen et al., 1994). Small zooplankton tend to quickly
graze small phytoplankton, whereas large zooplankton grazing rates are
often outpaced by large phytoplankton, allowing for the prevalence of
large phytoplankton species in nutrient-rich regions (Fuchs and Franks,
2010; Ingrid et al., 1996; Leibold, 1996). This phenomenon favors
growth of intermediate and large phytoplankton, even with slower
uptake rates relative to their smaller counterparts (Terseleer et al.,
2014).

Previous observational studies of ecosystem dynamics have shown
that phytoplankton size and total biomass follow a power-law size
spectrum with small phytoplankton contributing to a large percentage
of the biomass (Partensky et al., 1999; Franks, 2002; Zhou and Hunt-
ley, 1997). Sheldon et al. (1972) extended this spectrum to suggest
a universal power-law relationship for ocean food-webs between the
size of an organism and its standing biomass stock. However, simple
power-law relationships have been shown to break down in regions
with high nutrient concentrations (e.g., coastal margins) (Hood et al.,
1991; Huete-Ortega et al., 2014; Jonasz and Fournier, 1996; Schartau
et al., 2010; Worden et al., 2004; Zubkov et al., 2000), which show
intermediate peaks in biomass along the size spectrum that tend to
aggregate around specific phytoplankton sizes (Cavender-Bares et al.,
2001; Karp-Boss et al., 2007; Giometto et al., 2013). We refer to this
phenomenon as ‘‘quantization’’ of the phytoplankton size spectrum.

Quantization in plankton size spectra has been previously captured
and reported in numerical models (Banas, 2011; Sauterey et al., 2017).
Trait-based models like size structured ecosystem models (SSEMs) al-
low for increased understanding of planktonic dynamics in the context
of resource competition (Huisman and Weissing, 2001; Follows and
Dutkiewicz, 2011). The choice to model dynamics with respect to
size can lead to quantization in biomass (Loeuille and Loreau, 2005),
and has been shown to be affected by the functional formulation of
grazing (Banas, 2011). Specifically, Banas (2011) note that varying the
width of the ‘‘window’’ of phytoplankton sizes that can be grazed by a
given zooplankton size class changes the number of quantized ‘‘peaks’’
that emerge in the resulting biomass size spectra. A smaller grazing
window, corresponding to more specialized zooplankton grazing, al-
lows the coexistence of a larger number of size peaks in the phytoplank-
ton and zooplankton size spectrum. Furthermore, in ecosystem models
where each zooplankton size class grazes only a single phytoplankton
size class, i.e. when grazing is extremely selective, quantization does
not occur (e.g. Franks (2002)). Size structured ecosystem models of
higher complexity, such as that presented by Ward et al. (2012),
show that while small phytoplankton are always globally present, in
agreement with observations, larger phytoplankton are generally found
in regions with high nutrient concentrations, such as near continental
2

margins. However, this model does not show size quantization, likely
because of the relatively coarse resolution of phytoplankton size spec-
tra. Thus, it remains unclear to what extent quantization is a robust
feature of size-structured ecosystems, and what factors determine its
emergence and characteristics under typical oceanic conditions.

In this study, we investigate size quantization in a minimal com-
plexity size-structured nutrient, phytoplankton, zooplankton, detritus
(NPZD) model, similar to models used in previous work (Banas, 2011;
Ward et al., 2012). We run a series of experiments to understand
how the model parameters control quantization and the location of
the biomass peaks along the size spectrum in both zero- and one-
dimensional (0D and 1D) environments. We identify a few salient
parameters that have been shown previously to be important in captur-
ing ecosystem dynamics, these include the nutrient supply (Sarmiento
and Gruber, 2006), the grazing profile and preference (Banas, 2011;
Chenillat et al., 2021), and size resolution as a proxy of diversity, Hen-
son et al. (2021). As a consequence of robust quantization in the
solutions presented in the following sections, we are able to propose a
reduction in order in size space, and suggest that planktonic ecosystems
can be effectively modeled using a small number of representative
size classes, providing additional theoretical support for a widespread
practice in ecosystem modeling.

The rest of the paper is organized as follows: In Section 2, we
describe the size structured ecosystem model. In Section 3, we inves-
tigate the impacts of top-down and bottom-up controls on planktonic
size spectra through a series of experiments that explore the ecosystem
response to change in grazing strategies and nutrient supply, respec-
tively. In Section 4, we show that quantization is robust in 1D, and
that relationships between top-down and bottom-up control found in
0D generalize to 1D solutions. In Section 5, we take advantage of robust
quantization in 0D and 1D and demonstrate a method in which SSEMs
can be reduced to a few carefully chosen size classes that represent
the planktonic ecosystem when a large number of phytoplantkon size
classes are not feasible to use (eg. in high resolution regional models
or ESMs). Finally, in Section 6 we discuss the results and conclude the
paper.

2. Size-structured ecosystem model

2.1. Model rationale

We use a size structured ecosystem model based on those devel-
oped by Banas (2011) and Ward et al. (2012), and representative of
commonly used size-structured models (Armstrong, 1994; Poulin and
Franks, 2010; Follows et al., 2007; Dutkiewicz et al., 2012). Size is
the primary axis of diversity, reflecting robust allometric relationship
between an organisms size and resource encounter strategies (e.g. nu-
trient acquisition and grazing) (Follows et al., 2007; Litchman et al.,
2007; Tang, 1995; Eppley et al., 1969; Hansen et al., 1994; Klausmeier
et al., 2020). Using individual size as the axis of diversity can further
reduce the dimensionality of the model’s parameter space (Follows
and Dutkiewicz, 2011). While plankton diversity has been thought to
be sustained by niche selection and trait adaption (Hutchinson, 1961;
Sommer, 1989), modeled planktonic ecosystems have been shown to
collapse to a few representative groups as a consequence of com-
petition, Sauterey et al. (2017), Banas (2011), Loeuille and Loreau
(2005) even with models that simulate many species (Merico et al.,
2014; Bruggeman and Kooijman, 2007; Follows et al., 2007). Therefore,
we use a single functional axis of diversity in size as the basis for
our ecosystem model. Aspects of the model such as nutrient uptake,
grazing, and mortality are a combination of elements from models pre-
sented by Banas (2011) and Ward et al. (2012) and discussed in more
detail below. Trait (i.e., size) diffusion is formulated following Sauterey
et al. (2017).

While we cast ecosystem dynamics in terms of size, many ecosys-
tem models often include a representation of functional diversity (e.g.

Moore et al., 2001; Quere et al., 2005), which groups species and
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Fig. 1. Schematic of the size-structured ecosystem model used in this paper. Circles
show individual model state variables (nutrient, phytoplankton, zooplankton and detri-
tus biomass). Arrows show the direction of nutrient fluxes and interaction within the
ecosystem, from a single nutrient pool to phytoplankton via uptake, from phytoplankton
to zooplankton via grazing, and so on. This formulation allows for size-dependent
preferential grazing in which zooplankton interact with several phytoplankton size
classes, and, potentially, with other zooplankton.

taxa with similar nutrient uptake requirements or strategies to form
a single functional group — e.g., cells that require silicon are modeled
as the functional diatom group. Thus, each functional group provides a
unique control on a biogeochemical pathway. While models based on
functional groups have had success in predicting patterns of plankton
distribution and productivity on a global scale (Gregg and Casey,
2007), they often require increased complexity relative to trait-based
approaches (Follows and Dutkiewicz, 2011). Another challenge with
this modeling approach is choosing the appropriate representation
of functional groups to resolve the diversity in an ecosystem (Hood
et al., 2006; Quere et al., 2005). Finally, functional groups are in-
creasingly represented along a spectrum of different sizes (Ward et al.,
2012; Dutkiewicz et al., 2020). Therefore, as a result of both reduced
model parameter space and complexity, and a simplicity in representing
ecosystem dynamics with allometric relationships, we focus on size
alone as our primary axis of variability, with a single nutrient group
and two size spectra of phytoplankton and zooplankton.

In the model, allometric relationships control phytoplankton nutri-
ent uptake and limitation, zooplankton grazing rates, and size pref-
erence in predator–prey interactions (see Eqs. (6a)–(6b) and (10a)–
(10b)). This formulation is informed by studies that show that smaller
phytoplankton have faster nutrient assimilation rates and are less nu-
trient limited as a consequence of their small surface area to volume
ratio (Eppley et al., 1969; Tang, 1995). On the other hand, large
phytoplankton are more nutrient limited and have slower uptake rates.
Additionally, smaller zooplankton have faster grazing rates compared
3

to larger zooplankton (Hansen et al., 1994). We omit size dependence
on zooplankton half-saturation rates in this model, however previous
work by Edwards et al. (2012) has shown that half saturation rates with
respect to size exhibit allometric behavior. This choice in our design
is to minimize the number of allometrically defined variables and
dependencies, as this other size structured ecosystem models include
the same assumption.

Grazing dynamics is modeled after broad patterns of predator–
prey size interactions. Here, we assume that small zooplankton graze
prey of approximately the same size, while larger zooplankton prefer
prey smaller than their own size (Hansen et al., 1994). While this
is not the case for all zooplankton, and often depends on specific
grazing strategies (Kiørboe, 2011), this functional form of grazing is
commonly adopted in models (Moore et al., 2001; Poulin and Franks,
2010; Banas, 2011; Ward et al., 2012) with well documented grazing
rates and preferential prey size (Hansen et al., 1994). Other represen-
tations of grazing includes the so-called ‘‘kill-the-winner’’ formulation,
in which switching between optimal prey groups occurs, depending
on prey abundance (Vallina et al., 2014). However, this formulation
is dependent on many parameters that need be finely tuned. For the
sake of simplicity, we model in this study a process referred to as ‘‘ag-
nostic feeding’’ (Gentleman et al., 2003), which assumes that grazing
pressures are constant between prey classes and, in this formulation,
distributed only as a function of size.

Finally, while zooplankton and phytoplankton are separated into
various sizes classes, detritus is collated as a single particulate group.
While this simplification limits the use of the model to investigate the
effect of plankton size structure on particle export and remineraliza-
tion (Dunne et al., 2005; Richardson and Jackson, 2007), the detritus
group could be easily expanded to incorporate variable size classes con-
trolled by allometric relationships. However, uncertainty remains on
the robustness of such relationships; for example, Iversen and Lampitt
(2020) question the usefulness of particle size as an indicator of sinking
speed, while other studies support it (Cael et al., 2021). Because the
focus of this paper is plankton dynamics and size quantization, we opt
to combine all detritus into a single sinking group (in 1D) for simplicity.

In the following, we outline each component of the model. Depen-
dence on size is implicit, with the exception of size diffusion, and all
functions in the model are written with respect to 𝑁,𝑃 ,𝑍, and 𝐷.
A schematic of the model is shown in Fig. 1; model parameters are
summarized in Table 1.

2.2. Evolution equations

The following mass conservation equations express the time ten-
dencies for a single nutrient akin to nitrate (𝑁), phytoplankton (𝑃 ),
ooplankton (𝑍), and detritus (𝐷), all expressed in units of nutrient
i.e., nitrogen) concentration (mmol m−3). The number of phytoplank-
on size classes is 𝑛𝑝, and the number of zooplankton size classes is
𝑧. This model allows for an arbitrary number of zooplankton and
hytoplankton sizes. The indexing variables for phytoplankton and zoo-
lankton size classes are 𝑖 and 𝑗 respectively. Each evolution equation
ncludes a component of physical forcing. In 0D, the physical forcing
s a constant nutrient supply in the 𝑁 equation. In 1D, nutrients are

restored to an idealized profile, and all biogeochemical tracers are
mixed by vertical diffusion.

The nutrient concentration 𝑁 evolves in response to uptake by
phytoplankton, remineralization, physical forcing:

𝜕𝑁
𝜕𝑡

= 𝛤 (𝑁)
⏟⏟⏟

Physical Forcing

−
𝑛𝑝
∑

𝑖


(

𝑁,𝑃𝑖
)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Uptake by phytoplankton

+ (𝐷).
⏟⏟⏟

Remineralization

(1)

In 0D, physical nutrient supply takes a constant value (Section 3), while
in 1D it is calculated via a restoring term (Section 2.8). In 1D, uptake
of nutrients has additional functional dependencies on temperature and
light.
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The phytoplankton concentration evolves in response to nutrient
uptake, grazing by zooplankton, linear mortality, and size diffusion:

𝜕𝑃𝑖
𝜕𝑡

= 𝛤 (𝑃 )
⏟⏟⏟

Physical Forcing

+
𝑛𝑝
∑

𝑖
 (𝑁,𝑃 )

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Uptake by phytoplankton

−
𝑛𝑧
∑

𝑗
𝐺
(

𝑍𝑗 , 𝑃𝑖
)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Grazing by zooplankton

−𝑝
(

𝑃𝑖
)

⏟⏞⏟⏞⏟
Mortality

+𝜑 𝜕2

𝜕
(

log10 𝓁𝑖
)2

𝑃𝑖,

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Size diffusion

(2)

here the length of the 𝑖th phytoplankton size is denoted as 𝓁𝑖. Size
iffusion in this model allows for small amounts of trait mutation
nd variability between phytoplankton and zooplankton along the size
pectra (Sauterey et al., 2017), with the diffusion coefficient denoted as
. Size diffusion is calculated in log-space, and described in Section 2.7.
his addition to the SSEM captures the ability of plankton to adjust
heir size as a mechanism for niche selection (Merico et al., 2014).

The zooplankton concentration evolves in response to grazing of
hytoplankton, heterotrophic grazing, a quadratic mortality term, and
ize diffusion:
𝜕𝑍𝑗

𝜕𝑡
= 𝛤 (𝑍)

⏟⏟⏟
Physical Forcing

+ 𝜆
𝑛𝑝
∑

𝑖
𝐺
(

𝑍𝑗 , 𝑃𝑖
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Total uptake of phytoplankon

−
𝑛𝑧
∑

𝑗′
𝑆
(

𝑍𝑗′ , 𝑍𝑗
)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Heterotrophic grazing loss

+ 𝜆𝑠
𝑛𝑧
∑

𝑗′′
𝑆
(

𝑍𝑗 , 𝑍𝑗′′
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Heterotrophic grazing uptake

−𝑧
(

𝑍𝑗
)

⏟⏞⏞⏟⏞⏞⏟
Mortality

+𝜑 𝜕2

𝜕
(

log10 𝓁𝑗
)2

𝑍𝑗 .

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Size diffusion

(3)

he size of the 𝑗th zooplankton size class is defined as 𝓁𝑗 . Both the
razing and self grazing profiles are presented as a functional depen-
ence on the predator and prey, listed respectively in the function. For
xample, 𝐺(𝑍, 𝑃 ) translates to the grazing of the predator zooplankton
n the prey phytoplankton, and 𝑆(𝑍𝑗′ , 𝑍𝑗 ) corresponds to the grazing
f predator zooplankton, 𝑍𝑗′ on the 𝑗th zooplankton size class, 𝑍𝑗 .

Finally the detrital concentration evolves in response to egestion or
‘messy grazing’’, phyto- and zooplankton mortality, remineralization,
nd sinking and removal:

𝜕𝐷
𝜕𝑡

= 𝛤 (𝐷)
⏟⏟⏟

Physical Forcing

+ (1 − 𝜆)
𝑛𝑝
∑

𝑖

𝑛𝑧
∑

𝑗
𝐺
(

𝑍𝑗 , 𝑃𝑖
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Egestion from grazing phytoplankton

+ (1 − 𝜆𝑠)
𝑛𝑧
∑

𝑗

𝑛𝑧
∑

𝑗′
𝑆
(

𝑍𝑗′ , 𝑍𝑗
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Egestion from heterotrophic grazing

+
𝑛𝑝
∑

𝑖
𝑝

(

𝑃𝑖
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Phytoplankton mortality

+
𝑛𝑧
∑

𝑗
𝑧

(

𝑍𝑗
)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Zooplankton mortality

− (𝐷)
⏟⏟⏟

Remineralization

− 𝜕
𝜕𝑧

(

𝑤sink𝐷
)

.
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Particle sinking

(4)

Note that the particle sinking term is calculated as an approximate
sinking term in 0D and an explicit sinking term in 1D. The detritus
equation serves to close the ecosystem model; in the absence of sources
and sinks (nutrient forcing and removal via sinking), the size-structured
NPZD model conserves total nutrient.

2.3. Nutrient uptake

Uptake is calculated using standard Michaelis–Menten dynamics
that allows for a saturating response at high nutrient concentration
(Franks, 2002), with additional functional dependence on local irra-
diance and temperature in 1D (Banas, 2011; Ward et al., 2012). This
uptake is formulated as

 (𝑁,𝑃𝑖) = 𝑈max
𝑖 ⋅  (𝑧, 𝑃 ) ⋅  (𝑧) 𝑁

𝑖 𝑃𝑖, (5)
4

𝑁 + 𝑘𝑁
here the light and temperature dependence functions are denoted as
(𝑧, 𝑃 ) and  (𝑧), respectively. In 0D both functions are set to constants,

.e.,  =  = 1. In 1D, they are defined following Eqs. (26a) and
26b). The maximum uptake rate and half-saturation coefficient are
llometric, following Banas (2011):

max
𝑖 = 𝑎𝑢

(

𝓁𝑖
𝓁0

)𝑏𝑢
, (6a)

𝑘𝑖𝑁 = 𝑎𝑘

(

𝓁𝑖
𝓁0

)𝑏𝑘
. (6b)

All allometric parameters are given in Table 1. In this formulation,
small phytoplankton benefit from fast uptake rates, and are less nutrient
limited. Large phytoplankton, on the other hand, have slower rates of
nutrient assimilation and are more nutrient limited (Tang, 1995; Banas,
2011; Ward et al., 2012).

2.4. Grazing

The grazing pressure is calculated as a function of predator and
prey abundance, with an optimal predator–prey length scale, and a
grazing preference represented by the width of a grazing profile. Banas
(2011) and Ward et al. (2012) note that formulating the grazing profile
in this way assumes that the encounter rate between predator and
prey decreases outside of an optimal window, meaning that small prey
are hard to detect by large predators. On the other hand, very large
prey are less efficient forms of nutrient ingestion. This is commonly
represented by a log-normal distribution, 𝜗𝑗,𝑖, about an allometrically
defined optimal predator–prey length scale, 𝓁opt, with a grazing profile

idth of 𝛥𝓁.
In this formulation, we assume that zooplankton heterotrophically

graze on any plankton (phytoplankton or zooplankton) of a specific
size with equal preference. Eqs. (7) and (8) model grazing as interac-
tions between a predator zooplankton, 𝑍𝑗 , phytoplankton prey 𝑃𝑖 and
zooplankton prey 𝑍𝑗′ . Grazing is formulated using Michaelis–Menten
dynamics (Franks, 2002; Banas, 2011; Ward et al., 2012) and depends
on the total stock of prey plankton 𝐵𝑗 , and half saturation coefficient
𝑘𝑝. Prey refuge is defined by Eqs. (12a)–(12b), which reduces grazing
when the stock of prey becomes scarce.

The general form for grazing interactions between phytoplankton
and zooplankton is

𝐺(𝑍𝑗 , 𝑃𝑖) = 𝐺max
𝑗

𝜗𝑗,𝑖𝑃𝑖

𝑘𝑃 + 𝐵𝑗
⋅  (𝑃𝑖) ⋅𝑍𝑗 , (7)

here the 𝑗th zooplankton class grazes the 𝑖th phytoplankton size class.
he component of heterotrophic grazing is defined as

(𝑍𝑗 , 𝑍𝑗′ ) = 𝐺max
𝑗

𝜗𝑗,𝑗′𝑍𝑗

𝑘𝑃 + 𝐵𝑗
⋅  (𝑍𝑗′ ) ⋅𝑍𝑗 , (8)

here the 𝑗th zooplankton class grazes the 𝑗′-th zooplankton size class.
he total biomass available for grazing by the 𝑗th predator is defined
s

𝑗 =
𝑛𝑝
∑

𝑖
𝜗𝑗,𝑖𝑃𝑖 +

𝑛𝑧
∑

𝑗′
𝜗𝑗,𝑗′𝑍𝑗′ . (9)

ollowing Banas (2011) and Ward et al. (2012), the maximum up-
ake rate of phytoplankton by zooplankton along with the optimal
redator–prey length scale are allometrically defined by,

max
𝑗 = 𝑎𝑔

(𝓁𝑗
𝓁0

)𝑏𝑔
, (10a)

𝓁opt
𝑗 = 𝑎𝑙

(𝓁𝑗
𝓁0

)𝑏𝑙
. (10b)

These relationships prescribe that small zooplankton graze prey more
efficiently than large zooplankton (Hansen et al., 1994). Predator–
prey size interactions also vary with respect to predator size: small
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zooplankton tend to graze prey around the same body length as their
own, whereas large zooplankton tend to graze prey that are much
smaller than their own size (Hansen et al., 1994). In this formulation,
the maximum zooplankton size is set by the largest size class present
in the phytoplankton spectra.

The grazing preference of each zooplankton size class, on each prey
size class is defined by a 𝑛𝑝 × 𝑛𝑧 matrix, represented by,

𝑗,𝑖 = exp

⎡

⎢

⎢

⎢

⎣

−
⎛

⎜

⎜

⎝

log10(𝓁𝑖) − log10(𝓁
opt
𝑗 )

𝛥𝓁

⎞

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎦

. (11)

he total amount of biomass available to each zooplankton size class
s represented by the sum in the denominator in Eq. (7), with the total
vailable biomass for each phytoplankton size class represented in the
umerator. Finally, the functions  (𝑃𝑖) and  (𝑍𝑗 ) limit the grazing
ressure when the total phytoplankton and zooplankton prey biomass
s small, respectively, i.e.,

 (𝑃𝑖) = 1 − exp

(

−
∑

𝑗
𝜗𝑗,𝑖𝑃𝑖

)

, (12a)

(𝑍𝑗′ ) = 1 − exp

(

−
∑

𝑗
𝜗𝑗,𝑗′𝑍𝑗′

)

. (12b)

hese zooplankton and phytoplankton prey refuge functions, 𝐹 (∙) are
efined separately to simulate preference in grazing when one pop-
lation of prey becomes particularly dominant (Mayzaud and Poulet,
978).

.5. Mortality

The mortality terms in the ecosystem are formulated linearly for
hytoplankton and quadratically for zooplankton. Phytoplankton mor-
ality is almost always modeled as a linear process in NPZD models
nd SSEMs (Franks, 2002; Poulin and Franks, 2010; Banas, 2011;
ard et al., 2012), whereas zooplankton mortality varies between
odels (Record et al., 2014). A quadratic mortality reflects the assump-

ion that mortality processes not explicitly represented by the model,
.g. disease or grazing by predators outside the modeled size spectrum,
re proportional to the total zooplankton stock, ∑

𝑗 𝑍𝑗 . (Murray and
arslow, 1999) and Franks (2002) describe the response of a NPZ model
ith quadratic mortality and show that, at steady state, phytoplankton
iomass increased until nutrient uptake or zooplankton grazing became
aturated at the highest loads. By using a quadratic mortality in this
odel, we are able to simulate the effect of higher trophic level grazing

n zooplankton, and allows for the nutrient uptake to become saturated
n this model, which in turn allows for large phytoplankton size classes
o be represented. The phytoplankton mortality is given by,

𝑝(𝑃𝑖) = 𝜇𝑝𝑈
max
𝑖 𝑃𝑖, (13)

nd

𝑧(𝑍𝑗 ) = 𝜁𝑍𝑗
∑

𝑗′
𝑍𝑗′ . (14)

ere 𝜁 is diagnosed by Banas (2011) to be,

=
𝐺2

max𝜆

4𝑈max 𝑘𝑝
. (15)

where overbars denote averages over the uptake and grazing rates
for all size classes of phytoplankton and zooplankton, respectively. To
diagnose the value of 𝜁 , we use a high resolution grid and calculate the
uptake and grazing rates, finding that 𝜁 = 1.7 1/(mmol 𝑁 d), and fix
this value for all runs in both the SSEM and the ROEM (Section 5).
5

2.6. Nutrient remineralization, forcing and sinking

Remineralization is formulated following (Dutkiewicz et al., 2009,
2012; Banas, 2011; Ward et al., 2012), as a linear function:

(𝐷) = 𝑟n𝐷. (16)

his represents bacterial processes by which particulate organic mate-
ial is remineralized back into inorganic form.

Sinking of particles is the dominant process via which organic
aterial is exported from the surface to depth (McCave, 1975). This

erves to reduce near-surface remineralization and increase sub-surface
utrient concentration (Ducklow et al., 2001). In our model, we repre-
ent detritus as an aggregate group that sinks at a constant rate (Iversen
nd Lampitt, 2020). To simulate sinking particles in 0D, we assume a
inking speed, 𝑤sink, and a mixed-layer depth, 𝐻sml, and approximate
he tendency due to sinking and removal as,

𝜕
𝜕𝑧

(

𝑤sink𝐷
) |

|

|

|0
= −

𝑤sink
𝐻sml

𝐷. (17)

The physical forcing in 0D is constant, and set to

𝛤 (𝑁) = 2 mmol N∕m3∕𝑑. (18)

In 1D, the physical terms (𝛤 (∙)) are a combination of nutrient restor-
ing and diffusion. The one-dimensional extension is described in Sec-
tion 2.8.

2.7. Size diffusion

Adaptations/mutations in the phytoplankton and zooplankton pop-
ulations are represented as a trait diffusion process, based on the
assumption that the phenotypic effect of mutations is small, random,
and continuous in size space (Sauterey et al., 2017). Diffusion is calcu-
lated in log-size space so that diffusion is not skewed toward smaller
sizes along the size spectra:

𝜑 𝜕2

𝜕
(

log10 𝓁2
𝑖
)𝑃𝑖 = 𝜑

[

1
𝛥2
𝑖−1∕2

𝑃𝑖−1 −

(

1
𝛥𝑖+1∕2𝛥𝑖−1∕2

+ 1
𝛥2
𝑖−1∕2

)

𝑃𝑖

+ 1
𝛥𝑖+1∕2𝛥𝑖−1∕2

𝑃𝑖+1

]

, (19a)

𝛥𝑖−1∕2 = log10(𝓁𝑖) − log10(𝓁𝑖−1), (19b)

𝛥𝑖+1∕2 = log10(𝓁𝑖+1) − log10(𝓁𝑖). (19c)

Here 𝜑 is given in Table 1, and 𝓁𝑖 is the size of the phytoplank-
ton cell. The coefficient of diffusion is taken from Sauterey et al.
(2017). Sauterey et al. (2017) determined that the total number of
biomass peaks in the spectra is inversely correlated with the diffusion
coefficient. In our model, we allow for weak size diffusion that supports
the same number of species as solutions without size diffusion, while
still allowing for weak trait evolution. The purpose of this choice is to
limit the sharpness of the peaks and allow for small deviations about
the optimal plankton size. Without size diffusion, biomass peaks are
increasingly sharp, and their width is eventually determined by the
numerical resolution in size space. The solutions at higher diffusivities
given in Table 1 allow for wider peaks at steady state, but do not
significantly affect the overall center of mass or total biomass.

2.8. Extension to 1D

We conduct most of the analysis in 0D (Section 3). However, in
Section 4 we extend our analysis to 1D, to investigate the role of spatial

heterogeneity. Here, we describe the model extension to 1D.
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Table 1
Parameters and values of the size structured ecosystem model. All parameters without specific references are configuration-dependent and can
change between experiments.
Parameter Value Units Description Reference

𝛼 0.45 Percentage of light available for photosynthesis Moore et al. (2001)
𝑎𝑔 25 1/d Coefficient of allometric grazing rate Hansen et al. (1994)
𝑎𝑘 0.1 𝜇MN Coefficient of allometric nutrient limitation Eppley et al. (1969)
𝑎𝑙 0.5 μm Coefficient of optimal predator–prey length scale Hansen et al. (1994)
𝑎𝑢 2.6 1/d Coefficient of allometric nutrient uptake Tang (1995)
𝑏𝑔 −0.4 Exponent of allometric grazing rate Hansen et al. (1994)
𝑏𝑘 1 Exponent of allometric nutrient limitation Eppley et al. (1969)
𝑏𝑙 0.65 Exponent of optimal predator–prey length scale Hansen et al. (1994)
𝑏𝑢 −0.45 Exponent of allometric nutrient uptake Tang (1995)
𝐻sml 50 m Mixed-layer depth –
𝑘𝑐 0.04 m Absorption coefficient for photosynthesis Moore et al. (2001)
𝑘𝑤 0.03 m Absorption coefficient for water Moore et al. (2001)
𝜑 [0, 3.7 × 10−7) log 10(μm)2/d Size diffusion coefficient Sauterey et al. (2017)
𝑃 init 0.1 mmol N/m3 Initial concentration of phytoplankton –
𝑄sw 340 W/m2 Surface irradiance Moore et al. (2001)
𝑟 0.05 Temperature dependence Ward et al. (2012)
𝑟n 0.04 1/d Remineralization rate Ward et al. (2012)
𝑇0 10 𝑜C Reference temperature –
𝜇𝑝 0.02 Phytoplankton mortality (fraction of growth rate) Banas (2011)
𝑤sink 10 m/d Detritus sinking speed –
𝑍 init 0.01 mmol N/m3 Initial concentration of zooplankton –
𝜁 1.7 1/(mmol N d) Quadratic zooplankton mortality
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Table 2
Physical parameters used to run the size structured ecosystem model in 1D.

Parameter Value Units Description

𝐻exp 150 m Decay scale for surface temperature
𝐻rd 15 m Minimum depth of non-zero restoring for nutrients
𝐻sml 25 m Imposed depth of mixed layer
𝜅bg 10−4 m2/s Background vertical diffusivity
𝜅0

sml 10−1 m2/s Maximum surface mixed layer vertical diffusivity
𝑁max 25 mmol N/m3 Maximum nutrient concentration at depth
𝑁𝐻 80 m Decay scale for nutrients
𝑇0 10 ◦ C Reference temperature for nutrient uptake
𝑇max 22 ◦ C Maximum temperature at the surface
𝑇max 4 ◦ C Minimum temperature in the water column

2.8.1. Restoring and diffusion
Vertical dynamics have a first order impact on the distribution of

phtyoplankton within the euphotic zone as a consequence of mixing
within the surface mixed layer and light- and temperature-limitation
(Ryabov et al., 2010; Klausmeier and Litchman, 2001; Beckmann and
Hense, 2007; Venrick, 1993). Within the surface layer, phytoplankton
are vertically mixed and exposed to a variety of light conditions as
a consequence of light attenuation (Sverdrup, 1953; Huisman et al.,
1999; Obata et al., 1996; Mahadevan et al., 2012). If the mixed layer
is sufficiently shallow, high concentration of chlorophyll are found
in deep chlorophyll maxima as a result of the balance between light
limitation and nutrient availability (Partensky et al., 1999; Cullen,
1982). Thus, in the presence of spatial variations in light and nutrient
variability, these ‘‘bottom-up’’ influences on the ecosystem may be
expected to affect the vertical distribution of different phytoplankton
size classes.

Our 1-D model is an idealized, 𝑧-coordinate model with vertical mix-
ng and nutrient-restoring in lieu of vertical advection. The timescale
f restoring and profile of nutrients are tuned to approximate values
hosen in the nutrient forcing experiments conducted in Section 3.3.
he vertical diffusivity in the surface mixed layer is prescribed to have
he same structure as used in the 𝜅-profile parameterization (KPP)
f Large et al. (1994). However, we simplify the formulation by fixing
he mixed layer depth, 𝐻sml and maximum magnitude, 𝜅sml, rather

than computing these quantities from the surface forcing. Given a
background diffusivity of 𝜅bg(𝑧), the vertical profile of the vertical
mixing coefficient is
6

𝜅dia(𝑧) = 𝜅sml(𝑧) + 𝜅bg(𝑧). (20) (
ote that we do not include a bottom boundary layer in this formu-
ation, under the assumption that the euphotic zone is shallower than
he depth of the water column above the bottom boundary layer. The
rofile of 𝜅dia in the surface mixed layer, ie. −𝐻sml < 𝑧 < 0, is given
y,

sml(𝑧) = 𝜅0
sml𝐺KPP

(

𝜎sml
)

, (21)

here the dimensionless surface mixed layer coordinate, 𝜎sml =
𝑧∕𝐻sml, is defined such that 𝜎sml ∈ [0, 1] within the mixed layer, and
ll parameters are given in Table 2. The structure function is given by,

KPP(𝜎) =

⎧

⎪

⎨

⎪

⎩

27
4
𝜎sml(1 − 𝜎sml)2, 0 ≤ 𝜎sml ≤ 1,

0, 𝜎sml ≥ 1.
(22)

he scaling factor of 27∕4 ensures that the structure function has a
aximum factor of 1 over the mixed layer. The tendency due to
iffusion is calculated using an implicit diffusion scheme.

The nutrient forcing in the physical model is the restoring of nu-
rients to an idealized profile, in lieu of advection, and vertical mix-
ng, which allows us to resolve a surface mixed layer. The profile of
estoring is given by,

R(𝑧) = 𝑁surf − (𝑁max −𝑁surf) tanh
(

𝑧 +𝐻rd
𝑁𝐻

)

, (23)

here 𝑁surf is the surface nitrate concentration, 𝑁max is the maximum
itrate concentration at depth, 𝑁𝐻 is the thickness of the nutricline,
nd 𝐻rd is the depth at which the nutrient concentration begins to
onotonically increase.

All runs are initialized using the same initial conditions, noting that
he ‘‘init’’ subscript refers only to the initial profile:

𝑁init(𝑧) = 𝑁R(𝑧), (24a)

𝑃init(𝓁𝑖𝑝 , 𝑧) = 𝑃 init, (24b)

init(𝓁𝑖𝑧 , 𝑧) = 𝑍 init, (24c)

𝐷init(𝑧) = 0. (24d)

ere 𝑁R(𝑧) is defined in Eq. (23), and the profiles of 𝑃 , and 𝑍 are
et to constant values 𝑃 0 and 𝑍0 for all sizes and depths, respectively

Table 1).
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2.8.2. Temperature and light dependence
In a 1D framework, we additionally include dependence of nutrient

uptake on temperature and light (see Eq. (5)). We use an idealized
profile of coastal temperature motivated by measurements from Cali-
fornia Cooperative Oceanic Fisheries Investigations (McClatchie, 2016),
formulated following (Moscoso et al., 2021),

𝑇 (𝑧) = 𝑇min +
(

𝑇max − 𝑇min
)

exp
(

𝑧
𝐻exp

)

, (25)

here all parameters are given in Table 2.
The profile of irradiance is calculated via the Beer–Lambert Law

ith coefficients following Moore et al. (2001). The profile of photo-
ynthetically available light is integrated vertically at each time step to
alculate the light attenuation by phytoplankton and zooplankton,
𝜕𝐼(𝑧)
𝜕𝑧

= −𝑘par𝐼(𝑧), where 𝐼0 = 𝐼(𝑧 = 0) = 𝛼𝑄𝑠𝑤, (26a)

𝑘par = 𝑘𝑤 + 𝑘𝑐

(

∑

𝑖
𝑃𝑖 +

∑

𝑗
𝑍𝑗

)

. (26b)

The light-dependent uptake function represents a saturating response
at high levels of irradiation (Franks, 2002):

(𝑧, 𝑃 ) = 𝐼(𝑧)
√

𝐼20 + 𝐼(𝑧)2
, (27)

nd the temperature component of the uptake function is formulated
sing a typical exponential equation (Franks, 2002; Ward et al., 2012),

(𝑧) = 𝑒−𝑟(𝑇0−𝑇 (𝑧)). (28)

ith respect to a reference temperature 𝑇0.

. Emergent quantization

In this section, we characterize top-down and bottom-up controls
n quantization in SSEMs using a set of experiments that indepen-
ently control nutrient forcing and grazing with a finely-resolved size
rid. Other SSEMs models have shown quantized behavior around a
ew intermediate size classes when a predator–prey grazing width is
resent (Banas, 2011; Sauterey et al., 2017) in 0D. However, what
ontrols the location and robustness of the peaks in biomass is not
ell understood. Here, we perform experiments varying the size-space

esolution, the nutrient forcing, and the width of the predator–prey
nteraction window.

We integrate the model under constant forcing for 100 years, which
s longer than typical timescales of nutrient supply variability that are
ound in nature (Whitney et al., 1998; Messié et al., 2009). In all
xperiments, except those presented in Section 3.2, we resolve 200
hytoplankton and zooplankton size classes. For simplicity, we focus on
he steady-state behavior achieved at very long timescales, and discuss
he potential consequences of temporal variations in nutrient supply in
ection 6. For example, we see that abrupt changes in the size structure,
uch as bifurcations, may even occur after several decades at constant
orcing (see Fig. 2).

.1. Evolution to quantization in a reference experiment

All experiments run in this study use a relatively weak, constant
utrient forcing, with a long timescale that allows for the internal
ynamics of the ecosystem to evolve without additional perturbations.
hile steady state solutions can help inform ecosystem behavior, plank-

on are often impacted by ocean circulation on a variety of timescales
rom hours to months and longer (Deser and Timlin, 1997; Rodriguez
t al., 2001; Lévy et al., 2001; Lévy, 2003). Therefore, understanding
he spin-up behavior of our model from constant conditions can help
nderstand solutions in more realistic physical setting.
7

We show an example of a time series during model spin-up in
ig. 2. Quantization in this and other model solutions occurs after a
elatively short time scale ((days)) for the smallest phytoplankton and
ooplankton, likely as a result of fast uptake rates and rapid grazing,
hich quickly balance bottom-up and top-down controls. Large phy-

oplankton on the other hand, have slower grazing rates, but weaker
razing pressures. This likely controls the location of the peaks (see
ection 3.4) by optimizing predator–prey interactions and competition.
e explore this behavior in more detail in Section 3.4. Quantization in

hytoplankton biomass occurs on longer timescales than quantization
n zooplankton biomass. This is likely a consequence of competitive
xclusion, where large amplitude variations promote rapid exclusion of
ome zooplankton size classes (Barton et al., 2010). We note the pres-
nce of internal ecosystem variability in phytoplankton over the first 18
onths, which forces small oscillations around the stable zooplankton

ize classes, while the phytoplankton spectra reaches stability. During
his interval of time, the biomass peaks sharpen. In the longer-term, we
ee sharpening of biomass peaks to aggregate around a few specific size
lasses, a process that occurs over decades.

.2. Sensitivity to resolution in size-space

Previous studies have found that ecological models with coarse
esolution do not adequately capture phytoplankton diversity or quan-
ization (eg. Ward et al. (2012) and Henson et al. (2021)), whereas
odels with a finely-resolved trait grid are able to capture diversity

eg. Banas (2011)). The purpose of this experiment is to demonstrate
he number of size classes required both to achieve quantization in
iomass, and ensure that the ecosystem solution is well resolved and
ccurate in the total concentrations of phytoplankton and zooplankton.
e quantify the sensitivity to resolution by running a parameter sweep

etween resolving 5 and 200 size classes. A motivation for this exper-
ment is to ensure that our model fully resolves steady state behavior
nd reaches convergence with respect to size-grid resolution. For all
xperiments, the minimum and maximum size of the phytoplankton are
ixed, and the total biomass with respect to the resolution is shown in
ig. 3. Note that in the model, it is not necessary for the number of size
lasses to be the same between phytoplankton and zooplankton, but we
pt for this configuration for simplicity. For our analysis, we calculate
he concentration-weighted average size for the 𝑘th peak as

peak
𝑘 = 1

𝑃 tot
𝑘

𝑖max,𝑘
∑

𝑖=𝑖min,𝑘

𝑃𝑖𝓁𝑖, (29a)

𝑃 tot
𝑘 =

𝑖max,𝑘
∑

𝑖=𝑖min,𝑘

𝑃𝑖. (29b)

Here the boundaries (in size space) for integration over the 𝑘th peak,
defined by the indices 𝑖min,𝑘 and 𝑖max,𝑘, are defined by the locations
of local biomass minima along the size spectrum. The locations of the
zooplankton peaks in size space are defined analogously to Eqs. (29a)–
(29b).

At the coarsest resolution, 𝑛𝑝 = 𝑛𝑧 = 5, the biomass along the
phytoplankton and zooplankton size spectra is not quantized. As the
resolution in size-space increases, quantization emerges. Phytoplankton
and zooplankton biomass exhibits quantized behavior at 10 size classes,
but these solutions are not fully resolved. Here, we consider solutions
to be fully resolved when the biomass in each peak becomes insensitive
to further refinements of the size grid. In this case, we assume conver-
gence when variations in the total biomass between peaks varies by less
than 5 percent with increasing resolution. By this metric, quantization
in phytoplankton biomass is fully resolved with approximately 85 size
classes, whereas quantization in zooplankton occurs at 130 size classes.
However, this may be slightly conservative. Despite some oscillations
in the zooplankton size classes, the behavior is nearly stabilized at 50
size classes. Regardless, we use a high resolution for the remainder of
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Fig. 2. Evolution of a reference experiment over one hundred years of integration. The left column shows the phytoplankton concentration, and the right column shows the
zooplankton. The top row of this figure shows the plankton concentrations over the first five model years. Note that the colorbar has been shifted to show the internal ecosystem
oscillations before becoming stable. The middle row shows the concentrations over the entire model run, and the bottom row shows the plankton concentration as a function of
size, averaged over the final five model years.

Fig. 3. Quantization with increasing resolution in size space. The top row shows the parameter sweep diagram, the bottom row shows peak-integrated concentrations. Left column
shows phytoplankton biomass, right column shows zooplankton biomass. 𝑃 1 indicates the smallest non-zero biomass peak, 𝑃 2 indicates the second smallest non-zero biomass peak,
and so on. The same numbering convention is used for the zooplankton biomass peaks.
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the sensitivity experiments — 200 phytoplankton and zooplankton size
classes to ensure that solutions are fully resolved.

Model changes with finer grid size indicate that zooplankton are
more sensitive than phytoplankton to size resolution. With 10 size
classes, the maximum number of biomass peaks (4) for this configu-
ration emerges. The total biomass in each peak is approximately the
same, with the largest size class contributing to most of the phytoplank-
ton biomass. Zooplankton biomass, however, changes substantially as
a function of grid resolution after the emergence of quantization.
Specifically, at low resolution, the smallest size class has the highest
concentration of biomass, whereas at high resolution, the second size
class has the highest concentration of biomass. An explanation for this
is that grazing favors intermediate zooplankton size classes, because the
smallest zooplankton experiences the most predation pressure.

3.3. Sensitivity of quantization to external forcing

Nutrient supply ultimately determines the total biomass and domi-
nant size of phytoplankton in both models and observations (Worden
et al., 2004; McQueen et al., 1986; Chenillat et al., 2013; Verity and
Smetacek, 1996; Chavez, 1989; Armstrong, 1994). At high nutrient
concentrations, a large fraction of the phytoplankton biomass is concen-
trated within intermediate and large phytoplankton (Chisholm, 1992;
Cavender-Bares et al., 2001; Venrick, 2002). At low nutrient concen-
trations, most of the phytoplankton biomass is concentrated within
small size classes. We conduct two sets of experiments to investigate
the response of the model to different nutrient forcing strengths. The
first set shows responses to direct changes in nutrient supply rate. The
second set restores phytoplankton and zooplankton to a constant small
concentration at two different timescales to examine the robustness
of quantization in the presence of external sources and sinks. This
experiment is designed to mimic reduction of total biomass over differ-
ent timescales, and may be conceptualized as representing horizontal
variability or dilution.

Fig. 4 shows the ecosystem response to a variation in nutrient
forcing spanning the range between 0.1 and 3 mmol N/m3/d. The
higher end of this nutrient forcing is likely unrealistically large over
the long timescales of the experiments. However, Hales et al. (2005)
found similarly large nutrient supply averaged over the depth of the
mixed layer during an upwelling event. The lower end of this parameter
space represents oligotrophic waters (Johnson et al., 2010). At the
lowest levels of nutrient forcing (𝐹 ≤ 0.1 mmol N/m3/d) there is
only one biomass peak, consistent with typical oligotrophic, open-ocean
conditions (Partensky et al., 1999). At the highest nutrient forcing, the
intermediate and large biomass peaks increase in overall biomass, and
the largest biomass peak drifts toward larger sizes.

Zooplankton respond indirectly to variations in nutrient forcing, via
its impact on the phytoplankton biomass, and similarly exhibit bifurca-
tions in the biomass peaks as the nutrient forcing is increased. At high
nutrient forcing, there is an additional bifurcation in the zooplankton
distribution at an intermediate size class. This is likely a result of the
biomass loading of the largest and second largest phytoplankton size
classes, which allows for another large zooplankton class to persist.
Additionally, the largest size peak in zooplankton increases along to
optimize the spacing between other zooplankton classes and grazing
on the largest phytoplankton peak.

A robust feature of this experiment is that the approximate location
of the phytoplankton peaks, and, to some extent, the zooplankton
peaks as well, is nearly constant away from bifurcation points. This
indicates that while the bottom-up control determines the overall abun-
dance of phytoplankton and the dominant size class (Partensky et al.,
1999; Worden et al., 2004; Venrick, 1982; Armstrong, 1994), the top-
down control may be more important in determining the locations
of the biomass peaks along the size spectra (Cavender-Bares et al.,
2001; Chisholm, 1992; Venrick, 2002). We explore this behavior in
9

Section 3.4. t
We next examine the robustness of quantization by performing ex-
periments in which we restore the phytoplankton and zooplankton con-
centrations to small values. We restore using three different timescales:
6 months, 1 year, and 5 years. These timescales are representative of
different behavior during spin-up (see Fig. 2).

We set the restoring to be 𝑃restoring = 𝑃 init so that all size classes
re restored toward a profile without size-quantization in biomass,
ee Figure Fig. 5. We similarly force the zooplankton concentration
o the initial concentration 𝑍init using the same restoring timescales.

The restoring is calculated as an linear damping with respect to the
restoring timescale 𝑇r (see Fig. 5).

At the fastest restoring timescale, there is still some residual quan-
tization, similar to the dynamics that occur in early spin-up times.
At fast restoring timescales, the smallest size class is the most robust
as a consequence of fast uptake rates (Tang, 1995; Partensky et al.,
1999). On longer restoring timescales, the largest phytoplankton size
classes contain a substantial fraction of the phytoplankton biomass.
This implies that while quantization and the approximate center of
mass for each peak is established at shorter timescales, sharpening of
the peaks occurs on very long timescales.

The zooplankton exhibits a similar response to the imposed restor-
ing. However, the largest size classes in both the fast and slow restoring
experiments are significantly broader than in the steady state solution
with no restoring. Because the biomass in the fast restoring case is
located over a wider range of size classes, the largest zooplankton
size class can graze a broader range of sizes with less phytoplank-
ton limitation. Thus, with these experiments, we conclude that the
concentration-weighted size of the largest phytoplankton mode – and
thus zooplankton via grazing – is dependent on the bottom-up nu-
trient forcing (see Fig. 4). To better understand what controls the
location of the quantized solutions, we test various grazing profiles and
prey-selectivities.

3.4. Grazing profile width

Here, we vary the predator–prey selectivity window 𝛥𝓁 in Eq. (11)
to understand the behavior of the ecosystem with narrowed and broad-
ened selectivity, i.e. with smaller 𝛥𝓁 and larger 𝛥𝓁 respectively. With
increased grazing selectivity, the size window in predator–prey inter-
actions decreases, limiting the overall amount of total phytoplankton
available to a single zooplankton class. With reduced selectivity, a sin-
gle zooplankton size class is able to graze a wider variety of phytoplank-
ton sizes. Fig. 6 shows a bifurcation diagram varying the predator–prey
interaction window. We define the distance between biomass peaks as
the distance (in size space) between the concentrated-weighted sizes,
i.e. the difference, 𝑙peak

𝑘+1 − 𝑙peak
𝑘 , between adjacent biomass peaks.

Bifurcations in size space reflects trade-offs between bottom-up
utrient availability and top-down grazing pressures, by which phyto-
lankton optimize their total biomass with respect to size — a driver
or quantization. For example, small phytoplankton are less nutrient
imited, but have the highest grazing pressure (Tang, 1995). A trade-off
n this case would tend to shift biomass toward faster uptake rates and
ess nutrient limitation over the heavy grazing pressure. Alternatively,
arge phytoplankton are more nutrient limited but have less overall
razing pressure. A trade-off for large phytoplankton is to tend toward
educed grazing pressure under higher resource competition (Hansen
t al., 1994).

With broader prey-selectivity windows, there are fewer biomass
eaks along the phytoplankton and zooplankton size spectrum. As the
razing window shrinks, and zooplankton become more selective, a
eries of pitchfork bifurcations occur, which give rise to more biomass
eaks along the size spectrum, filling niches generated by reduced
razing pressure (Loeuille and Loreau, 2005). At smaller grazing profile
idths, more biomass peaks are found along the size spectrum, and in
he limit where 𝛥𝓁 → 0, the biomass is no longer quantized. We found
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Fig. 4. Bifurcation diagram for different nutrient forcing. The dashed line shows the location of the value used as a reference nutrient forcing for other experiments.
Fig. 5. Phytoplankton and zooplankton quantization in solutions with restoring to a small constant concentration (black dotted line) over time scales of 5 years, 1 year, and
0.5 years.
that there still exits quantization at very small values of 𝛥𝓁 ∼ 0.01,
assuming that the size grid is adequately resolved.

The distance between biomass peaks has an approximately linear
relationship with the grazing window when plot in log–log space
(Fig. 6, bottom), i.e. the relationship can be approximated by a power-
law. However, as a consequence of bifurcations, the linear relationship
is less accurate near bifurcation points.

In these experiments the phytoplankton biomass peak with the
largest organism size is strongly sensitive to the grazing window width.
The zooplankton biomass peak with the largest concentration-weighted
size, however, has nearly the same size at all grazing profile widths,
varying non-monotonically by a multiple of approximately 1.8 over the
range of grazing windows considered here. We can explain this behav-
ior as result of trade-offs between grazing pressure, nutrient limitation,
and uptake rates (McQueen et al., 1986). On one hand, more biomass
peaks along the size spectrum are able to coexist with a narrower
grazing window. On the other hand, with increased phytoplankton
biomass peaks there is more resource competition between various size
classes, benefiting smaller phytoplankton cells and reducing the size of
the largest phytoplankton.

To better understand the relationship between the grazing pro-
file width and the locations (in size space) of the biomass peaks,
we consider the grazing pressure of zooplankton on phytoplankton
in our reference experiments (𝛥𝓁 = 0.1, 0.2, 0.3). We define a peak-
integrated grazing pressure, 𝐺tot

𝑖,𝑘 as the phytoplankton-biomass nor-
malized grazing rate for each integrated zooplankton size class, 𝑍tot,
10

𝑘

e.g.

𝐺tot
𝑖,𝑘 = 1

𝑃𝑖

𝑗=𝑗max,𝑘
∑

𝑗=𝑗min,𝑘

𝐺(𝑍𝑗 , 𝑃𝑖). (30)

This metric quantifies the total rate of grazing of the 𝑖th phytoplankton
due to the 𝑘th zooplankton biomass peak. Without the normalization to
a rate (i.e. units of s−1), this metric would be dominated by the locations
of the phytoplankton biomass peaks.

In Fig. 7 we plot the total grazing pressure along the phytoplankton
size spectrum. The maxima in grazing pressure do not coincide with
peaks in phytoplankton biomass; rather, the phytoplankton biomass
peaks fall instead in the ‘‘shadow zones’’ of the grazing profile, emerg-
ing as a balance between grazing pressure and uptake rates, which
dynamically co-vary. Due to the non-linearity and large number of phy-
toplankton and zooplankton size classes, predicting the exact location
of the biomass peaks with the full system is challenging. However,
Fig. 7 lends insight into the relationship between grazing profile width
and the spacing between biomass peaks (Fig. 6): widening the graz-
ing profile widens the space between‘‘shadow zones’’ in which the
phytoplankton biomass peaks fall.

We note that zooplankton self-grazing (not shown) does not have
as much as an effect on the location of the biomass peaks in the
zooplankton size spectra. Instead, it redistributes the total biomass from
small zooplankton to large phytoplankton, as the self-grazing strength
increases.
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Fig. 6. This figure shows bifurcation diagrams with respect to the grazing profile width 𝛥𝓁 (top) and distance between the center of mass of each biomass peak (bottom), with
respect to phytoplankton biomass (left) and zooplankton biomass (right).
Fig. 7. Normalized grazing rate of each phytoplankton size class due to each zooplank-
ton biomass peak. The vertical dashed lines indicate the sizes of the phytoplankton
biomass peaks.
11
4. Persistent quantization in 1D

We now use our 1D model setup (Section 2.8) to examine quanti-
zation in a vertically heterogeneous environment that, while idealized,
provides a first order representation of environmental gradients found
in the ocean. The solutions shown in Fig. 8 are forced with three
different nutrient supply strengths, 𝑁surf = 0 (top row), 1 (center
row), and 2 mmol N/m3/d (bottom row), corresponding respectively
to oligotrophic, intermediate, and eutrophic conditions.

In the 1D framework, quantization persists in the presence of
vertical diffusion, variable nutrient supply, and variable light- and
temperature-limitation (Fig. 8). As a result of low nutrient concentra-
tion, the smallest phytoplankton class contains all of the biomass at
the surface, whereas at depth, larger phytoplankton contribute to the
high biomass concentration. Zooplankton solutions (not shown) are
similarly quantized. At depth, the largest phytoplankton outcompete
smaller phytoplankton. At high nutrient forcing throughout the mixed
layer, intermediate and large phytoplankton are responsible for most
of the biomass and outcompete smaller phytoplankton at depth. We
note that between the two solutions in 0D and 1D, the phytoplankton
biomass is approximately distributed in the same size classes.

Surprisingly, we find no vertical variations of phytoplankton size
even with vertical variations in nutrient supply (see Fig. 4). This suggest
that a vertically heterogeneous environment is still able to support
homogeneous quantization. A possible explanation is the presence of
vertical mixing of the dominant size classes, which in turn out-compete
other groups. This finding is consistent with 0D studies (Banas, 2011)
that show that size quantization is robust to seasonal variations in
nutrient supply.

We now repeat the experiments discussed shown in Section 3.4,
varying the grazing selectivity window 𝛥𝓁 in the 1D framework. Once
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Fig. 8. The final profiles for nitrate, phytoplankton, zooplankton, and detritus with respect to depth in the 1D model with surface mixed layer estoring rates of 0 mmol N/m3/d
(top), 1 mmol N/m3/d (center), and 2 mmol N/m3/d (bottom) to show the response under various surface nutrient forcing. Concentrations of organic and inorganic nitrate (left),
phytoplankton (center), and zooplankton (right) are shown.
each solution has reached steady state, we integrate the biomass verti-
cally through the water column and then compute the concentrated-
weighted, vertically-integrated biomass peak locations in size space
using Eqs. (29a)–(29b). Since the size of the largest phytoplankton peak
is dependent on the total nutrient forcing (Section 3.3), we use the
largest surface nutrient forcing (see bottom row in Fig. 8) to ensure
that the largest phytoplankton size class is represented.

We find qualitatively similar behavior between the 0D and 1D pa-
rameter sweeps, with a series of pitchfork bifurcations in the plankton
biomass as the width of the grazing profile decreases. Due to the
similarities, we do not include an additional bifurcation diagram. The
spacing between peaks retains a nearly linear relationship away from
regions containing bifurcations (see Fig. 6). We additionally find a
strong correlation between the size of the largest phytoplankton mode
and the grazing profile width in 1D. There are some minute differences
between the bifurcation diagram in 0D and 1D, for example in the exact
locations of the bifurcation points in 𝛥𝑙 space. We suspect that this may
be caused by vertical light- and temperature-limitation terms, and not
by any internal ecosystem dynamics.
12
5. Reduced order ecosystem modeling

The SSEM experiments show that quantization is a robust feature
in size structured ecosystem models even in a variable environment,
and that the width of the grazing profile determines the location of
biomass peaks along the spectrum in both 0D and 1D. This robustness
of quantization motivates us to reduce the complexity of the SSEM,
approximating each of the biomass peaks as a single size class along the
size spectrum. The purpose of this approach is to help inform methods
of discretization in models that are not able to resolve a large number of
size classes. Often models that fix the size of phytoplankton to general
sizes (eg. pico-, nano-, and microplankton) may miss the inherent quan-
tization and thus diversity in the solutions for the ecosystem (Henson
et al., 2021). We refer to the model we propose as a Reduced-Order
Ecosystem Model (ROEM).

5.1. Model reduction in size space

The ROEM takes advantage of robust quantization and reduces the
entire size spectrum to a few representative points along the biomass
spectrum. However, because the correlations between the peak distance
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Fig. 9. Comparison with the biomass in 0D solutions of the reduced order ecosystem model, compared with the total biomass in each corresponding peak from SSEM. The top
row shows the phytoplankton solutions from the ROEM (black), high resolution SSEM (green), and coarse SSEM (orange). The bottom row shows zooplankton solutions from the
ROEM (black) and SSEM (purple), and coarse SSEM (orange).
and grazing profile width deviate from a linear relationship near bi-
furcation points, we are unable to find an a priori relationship that
accurately predicts the location of the peaks for arbitrary values of
the predator–prey selectivity window, 𝛥𝓁. Instead, this process is done
numerically from a 0D solution for a specific grazing profile width.
Because the model behavior is approximately the same between 0D
and 1D, the location of the biomass peaks in 0D should be sufficient
to predict the location of the peaks in 1D, even with some degree of
heterogeneity in nutrients, temperature, or light. While the ROEM is
derived from a steady state solution of the SSEM in 0D, a reduced
order model can increase computational efficiency in higher spatial di-
mensions, while still providing a representation of ecosystem behavior
consistent with the SSEM.

In order to obtain each representative size class, we make the
assumption that modes along the biomass spectrum can be represented
as a delta function along the size spectra. We select the locations
of the phytoplankon and zooplankton size classes in by calculating
the concentration-weighted average sizes of each biomass peak (see
Eq. (29a)). For all solutions shown in Fig. 2, the number of size
classes used in the ROEM are equal to the number of biomass peaks.
Furthermore, the size classes used are specifically 𝓁peak

𝑘 . We test the
performance of the ROEM in 0D and 1D, see Figs. 9 and 10.

5.2. Model testing

Fig. 9 shows a comparison of the SSEM and the ROEM in 0D. We
compare the biomass between a finely discretized SSEM (𝑛𝑝 = 200), a
coarsely discretized SSEM (𝑛𝑝 = 5), and the corresponding representa-
tion with the ROEM. Each point corresponds to the integrated biomass
in each peak using Eq. (29b). The ROEM captures the phytoplankton
and zooplankton biomass well over various grazing profile widths.
However, the coarse representation of the SSEM does not perform
well across the full range of grazing profile widths. Overall, we find
that as the grazing profile width increases, the RMS error between
the SSEM and the ROEM decreases by several orders of magnitude in
phytoplankton biomass (figure not shown).

In Fig. 10 we perform a similar comparison between the SSEM and
ROEM in 1D. We compare the depth structure of the biomass in each
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size class in the ROEM with that of the total biomass in each peak in
the SSEM. Overall the behavior of the SSEM in 1D is well represented
by the ROEM, although some discrepancies remain. Specifically, the
large size classes at grazing profile widths of 𝛥𝓁 = 0.2 log10 (μm) and
0.3 log10 (μm) are less well captured by the ROEM, indicating some
limitations with the choice of using a single size class in representing
each biomass peak. Furthermore, the SSEM has slightly larger total
biomass compared to the ROEM. Despite these discrepancies between
the two models in 1D, the ROEM may still be preferable for ecosystem
modeling applications due to its greatly reduced computational cost.

6. Discussion and conclusions

In this study, we find that quantization in biomass along the size
spectrum as a consequence of top-down control in the form of grazing.
Our model suggests an important role for prey-selectivity behavior,
which has been identified as a grazing mechanism in laboratory studies
of zooplankton and phytoplankton interactions (Hansen et al., 1994).
However, comprehensive measurements of selective predation have not
been conducted in in-situ environments. Perhaps the most compelling
studying showing in-situ quantization in biomass was Schartau et al.
(2010). They found that not only were phytoplankton quantized after a
nutrient fertilization event in the IronExII campaign, but the biomass of
their predators was also quantized along the size spectra. Observational
studies have shown the emergence of dominant size classes reminiscent
of quantization in productive regions of the global ocean (i.e. Eastern
Boundary Upwelling Systems) that have high nutrient availability and
support large plankton cells (Hood et al., 1991; Jonasz and Fournier,
1996; Zubkov et al., 2000; Worden et al., 2004; Schartau et al., 2010;
Huete-Ortega et al., 2014). However, understanding environmental
controls on quantization in the field can be difficult because of the
variety of ecosystem processes involved.

In models, grazing is an important factor in setting the internal
ecosystem dynamics (Ingrid et al., 1996; Venrick, 1982; Leibold, 1996;
Fuchs and Franks, 2010). The functional representation of grazing is a
determining factor in ecosystem models (Steele and Henderson, 1992;
Chenillat et al., 2021), for example affecting population stability (Strom
and Loukos, 1998), and driving quantization (Banas, 2011). Often, the
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Fig. 10. A figure showing the solutions for phytoplankton SSEM (green), peaks integrated, and the ROEM (black), integrated for 100 years (left column), the total concentration
(center column), and the concentration-weighted average size from the 1D SSEM and 0D-informed ROEM (right column). The restoring nutrient profile is configured to represent
an oligotrophic surface ocean.
choice of zooplankton mortality closure is considered an important dis-
criminant in setting internal ecosystem dynamics (Record et al., 2014).
The choice of linear versus quadratic mortality in our model does not
affect the quantization of biomass. Instead, a linear closure term in
both phytoplankton and zooplankton allows for larger sizes classes to
emerge, following a relationship set by the grazing profile width, but
does not influence the location of the peaks (not shown). We note that
the mortality formulation in between linear and quadratic mortality
have been proposed (Record et al., 2014). Our tests with both linear
and quadratic mortality suggest that these intermediate formulations
would likely not alter the emergence of quantization however, a more
systematic analysis of the effect of mortality is left to future work.

We show that the locations (in size space) of the biomass peaks is
sensitive to the width of the grazing profile, 𝛥𝓁, which is the first order
control on setting the behavior at steady state (see Fig. 6 and Banas
(2011)). We find an approximately linear relationship between the
width of the grazing profile and the distance between biomass peaks in
both phytoplankton and zooplankton. This relationship loses explana-
tory power near bifurcation points in 𝛥𝓁-space. Successive bifurcations
suggest that phytoplankton optimize their size based predominantly on
grazing pressures, although explicitly showing this behavior is much
more challenging. A caveat of our analysis is that the model exhibits
non-linear behavior that is difficult to isolate from first principles.

Total nutrient availability and supply are secondary contributors to
the distribution of modes along the size spectra. Large and intermediate
size classes are responsible for a large fraction of the phytoplankton
biomass at high nutrient forcing, while small phytoplankton contribute
to most of the biomass at low nutrient forcing. This is consistent with
other models and observations (Partensky et al., 1999; Zhou and Hunt-
ley, 1997; Sheldon et al., 1972; Hood et al., 1991; Huete-Ortega et al.,
2014; Jonasz and Fournier, 1996). While changes in nutrient forcing
leave the locations of the biomass peaks in size space approximately
unchanged, increased nutrient forcing does result in emergence of
larger size classes with spacing predicted by the grazing profile width.
Qualitatively, we can describe this behavior as a mechanism to balance
grazing pressures and nutrient uptake limitations. This mechanism in
phytoplankton niche-filling has been studied by Leibold (1996), Ingrid
et al. (1996), and Fuchs and Franks (2010), which show that large
phytoplankton often outpace growth compared to their grazers by their
cell size. For our reference solution, we chose a relatively broad grazing
profile that is sufficiently far away from bifurcation points. While
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smaller grazing profile widths are perhaps more plausible (Hansen
et al., 1994), they would not alter the model behavior, besides al-
lowing a larger number of size peaks. The small width and high
sharpness of the biomass peaks as the model approaches equilibrium
are also rather unrealistic compared to broader distributions from in-
situ studies (Schartau et al., 2010). Natural marine environments with
horizontally variable nutrient availability and transport may smooth
sharp points in the biomass spectra. Furthermore, we only investigate
size as the axis of variability, while many more traits can be identified
in natural plankton populations.

In general, quantization appears to be a robust feature of marine
ecosystems, and ecosystem models, assuming some degree of compe-
tition for resources by the represented ecosystem components (here,
size classes). Evolutionary models that focus on niche selection and
emergent traits often show biomass peaks along their respective trait
spectra (Loeuille and Loreau, 2004, 2005; Brännström et al., 2011;
Sauterey et al., 2017; Edwards et al., 2018). In their study, Loeuille and
Loreau (2005) note that quantization of biomass can be described as a
method of niche selection for a given trait as a consequence of resource
competition. In our model, as 𝛥𝓁 increases, zooplankton are able to
graze a larger number of phytoplankton size classes, increasing resource
competition. This, in effect, gives more zooplankton sizes access to the
same resources (see Fig. 7). As a result of this increased competition,
the total number of peaks in phytoplankton and zooplankton biomass
decreases, and the preferential sizes are spread further in size space.
Another way to induce changes in resource competition is size-grid
resolution. At low size-grid resolution, zooplankton biomass shifts to-
ward smaller size classes (see Fig. 3), while the total concentration
in phytoplankton peaks remains approximately constant with respect
to resolution in size space. This effect increases resource competition
at smaller zooplankton sizes, due to the increase of biomass in those
peaks.

With this set of experiments, we seek to provide insights into the
behavior of the ecosystem as it relates to the emergence of peaks in
size distribution. The behavior of the model can be summarized in
the context of bottom-up and top-down controls. While there is some
evidence of size quantization in observational studies (Hood et al.,
1991; Schartau et al., 2010), there is not global evidence that specific
quantization, like the solutions we present in this paper, is consistently
present across diverse ocean conditions. An outcome of this study is to
enable deeper understanding of the behavior of quantization in regions
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of the ocean where it occurs. For example, if a region has quantized
biomass with a few distinct peaks, and a large average size, one may
hypothesize that zooplankton preferentially graze on many size classes.
Alternatively, if there are many size classes with a small average size,
one may hypothesize that zooplankton prefer to graze a few particular
sizes.

A practical application of this study extended to other general
marine ecosystem models with robust quantization is to use the same
method of model complexity reduction we used to derive the ROEM,
i.e. to simulate only the subset of organismal classes corresponding
to dominant peaks in trait space. The primary assumptions used to
define the ROEM are that biomass peaks are infinitesimally narrow
and that their locations in size space are insensitive to environmental
conditions. We note that biomass quantization collapses to a continuous
spectra once we restrict one predator to only graze one prey, i.e., when
grazing becomes extremely selective (Poulin and Franks, 2010). Thus,
the representational capacity of the ROEM falls with very selective
grazing.

Our solutions show that the total biomass in the SSEM is represented
by the ROEM to a good degree of approximation. However, there
remain some issues with over-estimation of total biomass for large
zooplankton in 0D with highly selective grazing, and issues with the
under-estimation of large phytoplankton biomass in 1D. Although the
ROEM does not always have high accuracy in representation of the
peaks, overall, we find that as the distance between peaks becomes
comparable to the width of the grazing profile the reduced model
exhibits increased performance and accuracy. However this issue exists
in all size structured ecosystem models that are coarsely discretized
(see Fig. 3). These issues have not be investigated in detail in this
study. However, there are implications for the representation of the
ecosystem, and specifically the biomass of grazers if large plankton are
over or underestimated (Cyr and Pace, 1992; Chenillat et al., 2021).

As a part of the development of the ROEM, we assume that the
biomass in each peak can be effectively represented as a delta function
in size space; however this is not a realistic assumption for phytoplank-
ton sizes. For example, plankton morphology can change over a cell’s
lifetime, or across an even limited number of generations, allowing
phytoplankton growth as a mechanism of niche adaptation. In order
to more accurately resolve the predicted biomass peaks, future studies
could allow for more stable solutions by picking a small window, inside
of the predicted location of each peak, and resolving a few points within
the boundaries of the peak. Additional approaches could also include
representing each peaks as a Gaussian function with a fixed width, or
including more points near the estimated concentration-weighted size.
However, these methods have not been tested.

The most relevant application of the model complexity reduction in
the ROEM would be to use in Earth System Models where vertical and
horizontal resolution limit the number of biogeochemical tracers due
to computational constraints. Ultimately, sharp biomass peaks emerge
under constant nutrient forcing over long timescales, but would likely
be smoothed out with more dimensions of physical variability and
coarser size-grid resolution (e.g., Ward et al. (2012)). This likely would
affect the accuracy of the ROEM because of the assumption that each
mode can be represented as a relatively narrow peak. We suggest that a
possible way to address inaccuracies in the representation of the SSEM
by the ROEM is to representing each biomass peak as a resolved interval
along the size-grid instead of a single point.

A major benefit of this approach is to resolve an entire high-
resolution ecosystem model with a few, emergent modes. The strategy
presented in this study to capture ecosystem dynamics in a reduced
order model can be extended to a variety of traits that results in robust
quantization of biomass. We expect quantization in the SSEM due to
size-selectivity in the grazing profile; however, the functionality and
accuracy of ROEM in higher dimensions is yet to be explored. Future
work with the ROEM is to test the accuracy of the model in horizon-
tally heterogeneous environments, and compare to quantization in the
SSEM. Coupling the ROEM to more comprehensive 2D and 3D models,
allows more extensive investigations of the planktonic food-web in a
15

computationally efficient framework.
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